结直肠癌术前的影像学分期评估与人工智能应用的研究进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省自然科学基金(2024A1515220103)


Research progress on preoperative imaging analysis and evaluation of colorectal cancer and
Author:
Affiliation:

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    结直肠癌是全球第三大常见恶性肿瘤,其术前精准分期对治疗决策至关重要。目前,影像学技术在分 期应用中各有局限,如CT对远处转移检测的敏感度较高,但区分早期T分期的准确率不足;MRI应用在T分期中的 准确率较高,却对小淋巴结转移的敏感性较低。本文综述了CT、MRI、超声(US)及PET/CT的临床应用边界,并重 点探讨影像组学与人工智能(AI)的创新突破,包括 AI在分期自动化和效率提升中的应用;多模态影像融合与模型 可解释性研究进展。AI技术进展为结直肠癌的个体化诊疗提供了新范式,未来需通过多中心数据验证以推动临床 转化。

    Abstract:

    Colorectal cancer (CRC) is the third most common malignant tumor in the world, and its precise preoperative staging is crucial for treatment decisions. Currently, imaging techniques have their own limitations in staging applications; for example, computed tomography (CT) has high sensitivity for detecting distant metastasis but insufficient accuracy in distinguishing early T-stage, while magnetic resonance imaging (MRI) is highly accurate in Tstaging but has low sensitivity for detecting small lymph node metastases. This article reviews the boundaries of clinical applications of CT, MRI, ultrasound (US), and positron emission tomography/computed tomography (PET/CT), and focuses on innovative breakthroughs in imaging histology and artificial intelligence (AI), including the application of AI in staging automation and efficiency enhancement, as well as advances in multimodal image fusion and model interpretability research. These technological advances provide a new paradigm for individualized diagnosis and treatment of CRC and need to be validated by multicenter data to promote clinical translation in the future.

    参考文献
    相似文献
    引证文献
引用本文

万明洁,李沁园,徐晓红.结直肠癌术前的影像学分期评估与人工智能应用的研究进展[J].广东医科大学学报,2025,43(3):240-246.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-24
  • 出版日期:

扫码关注

官方微信