机器学习在心肺运动试验中的应用进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62101546)


Application of machine learning in cardiopulmonary exercise testing
Author:
Affiliation:

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    心肺运动试验是一种用于评估心肺功能、运动能力和整体健康状况的综合测试方法。心肺运动试验 涉及多种复杂的生理参数时间序列数据,由于多系统生理参数的高关联性、个体差异性(如年龄和身体状况)与缺 乏统一解读标准等原因,使得现有心肺运动试验技术临床应用推广困难。机器学习通过对心肺时间序列数据进行 特征提取分析,最终实现疾病的诊断、运动状态识别以及各种生理指标的判断等。基于机器学习的心肺运动试验 技术可辅助医生诊断,其有效性优于传统解释方法。本文综述了机器学习在心肺运动试验中的应用进展,涵盖疾 病识别、生理参数预测、预后评估及通气阈值自动判定等方向,强调模型可解释性在临床中的重要性。针对当前数 据异构、模型泛化性差与临床落地难等问题,提出推动数据共享、发展可解释模型与实现远程智能分析,将心肺运 动试验从经验解读迈向数据驱动的智能评估新模式。

    Abstract:

    Abstract: Cardiopulmonary exercise testing (CPET) is a comprehensive testing method for evaluating cardiovascular function, exercise capacity, and overall health status. CPET involves multiple time series data of complex physiological parameters. Due to high correlations between the diverse physiological parameters, individual differences (such as age and physical condition), and a lack of unified interpretation standards, the clinical application and promotion of the existing CPET technologies are challenging. By extracting and analyzing features from cardiopulmonary time series data, a machine learning-based CPET system could facilitate disease diagnosis, exercise state recognition, and the assessmen of various physiological indicators. Furthermore, CPET technology based on machine learning can assist doctors in diagnosis and is more effective than traditional interpretation methods. This paper reviews the recent advances in the application of machine learning to CPET, encompassing disease identification, physiological parameter prediction, prognosis evaluation, and automated determination of ventilatory thresholds. It highlights the importance of model interpretability in clinical settings. In response to challenges such as data heterogeneity, limited model generalizability, and insufficient clinical applicability, the paper advocates for enhanced data sharing, the development of interpretable models, and the implementation of remote intelligent analysis, aiming to facilitate the transition of CPET from empirical interpretation toward a data-driven, intelligent evaluation paradigm.

    参考文献
    相似文献
    引证文献
引用本文

张 毅,林 林,鲍时春.机器学习在心肺运动试验中的应用进展[J].广东医科大学学报,2025,43(3):233-239.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-24
  • 出版日期:

扫码关注

官方微信