基于深度学习的视网膜OCT图像的疾病自动分类
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省自然科学基金(2014A030310258),东莞市企业特派员项目(20231800500312),松山湖医工融合创新专项项目(4SG22318P)


Automated disease classification in retinal OCT images using deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • 图/表
  • 访问统计
  • 参考文献
  • 相似文献
  • 引证文献
  • 资源附件
  • 文章评论
    摘要:

    目的 实现视网膜疾病光学相干断层扫描图像(OCT)的自动化分类。方法 整合公开数据集和临 床医院收集的视网膜OCT图像,构建包含3类视网膜疾病的标准化数据集:正常(Normal)、息肉样脉络膜血管病变 (PCV)和糖尿病黄斑水肿(DME)。对图像进行系统性预处理,包括数据规范化、分类标签筛查和数据增强,随后系 统评估并比较了6种主流卷积神经网络(VGG、ResNet、DenseNet、MobileNet 、EfficientNet和Inception)的分类性能。 结果 VGG16模型实现了98.92%的准确率;ResNet50和ResNet50_V2均实现了99.79%的准确率,但ResNet50的精度 和召回率均稍微优于 ResNet50_V2;Densenet121 的准确率为 99.94%,精度为 99.90%,召回率为 99.95%,F1 分数为 0.999 2,均 高 于 其 他 经 典 卷 积 神 经 网 络 模 型 ;EfficientNetB0、EfficientNetV2S、MobileNetV1、MobileNetV2、 MobileNetV3 和 Inception_V3 的 准 确 率 分 别 为 99.75%、99.83%、99.72%、99.85%、99.43% 和 99.35%。 结 论 Densenet121模型在视网膜OCT图像自动化分类中性能最优异,实现了对视网膜OCT图像的高效准确诊断。

    Abstract:

    Objective To develop an automated classification system for retinal diseases using optical coherence tomography (OCT) images.Methods A standardized dataset was constructed from both public repositories and clinical hospitals, comprising OCT images categorized into three classes: Normal, Polypoidal Choroidal Vasculopathy (PCV), and Diabetic Macular Edema (DME). Systematic preprocessing steps including data normalization, label verification, and augmentation were applied. Six convolutional neural network (CNN) architectures (VGG, ResNet, DenseNet, MobileNet, EfficientNet, Inception) were rigorously evaluated for classification performance. Results The VGG16 model achieved an accuracy of 98.92%, while ResNet50 and ResNet50_V2 attained 99.79%. Notably, ResNet50 exhibited marginally superior precision and recall compared to ResNet50_V2. DenseNet121 outperformed all other models, achieving an accuracy of 99.94%, precision of 99.90%, recall of 99.95%, and an F1-score of 0.999 2. Among EfficientNet variants, EfficientNetB0 and EfficientNetV2S reached accuracies of 99.75% and 99.83%, respectively. MobileNetV2 achieved the highest accuracy (99.85%) within its variants, followed by MobileNetV1 (99.72%) and MobileNetV3 (99.43%). Inception_V3 yielded an accuracy of 99.35%.Conclusion DenseNet121 demonstrates optimal performance for automated retinal OCT image classification, offering high accuracy and diagnostic efficiency for clinical applications.

    参考文献
    相似文献
    引证文献
引用本文

邹 突,曹婷婷,张国坚,等.基于深度学习的视网膜OCT图像的疾病自动分类[J].广东医科大学学报,2025,43(3):227-232.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-24
  • 出版日期:

扫码关注

官方微信